(注:气体电离后整个气体和金属的物理体系便发生了电流流动,两种金属相当于电池,气体相当于导线,则电流便由正极也就是正电性强的金属通过电离气体流向负极也就是正电性弱的金属;在电池内部也就是接触的两种金属中,则是电流由负极也就是正电性弱的金属流向了正极正电性强的金属;
这里再次强调了正电性强的金属即正极对应小的金属和气体之间的电势差V;正电性弱的金属即负极对应大的金属和气体之间的电势差V。即金属和气体之间的电势差V越大,金属的正电性越弱,光电灵敏度越低,越难发生光电效应。)
给出物理体系气体电离的假设后,爱因斯坦文字阐述了光电灵敏度和电势差V以及正电性的关系,比较绕口,其实也需要一定的思考和理解:“现在假设在气体中有一绝缘的金属M,设它对应于双面层相对于气体的电势差为V,要从金属送一个单位负电荷到气体中去,必须消耗其数值等于电势V的功。因此,V愈大,也就是金属带有的正电就愈小,光电漫射所需能量也就愈大,因而这种金属的光电灵敏度也就愈小。”
至于在这段论述中为何设定“要从金属送一个单位负电荷到气体中去”,那是因为这个情景就是光电漫射或光电效应的描述,电子也就是负电荷吸收光能脱离金属便是光电漫射或光电效应,因此,涉及到他们的物理描述就是把单位负电荷从金属送到气体中去,而不是送正电或者从气体到金属中去。
以上部分是对伏打效应即处于同一温度下的两种不同物体相接触而产生电动势的现象的事实描述,接着,爱因斯坦便用光量子论对伏打效应做了新的理论推断:
“到这里为止,我们只考察了事实,对于光电漫射的本质没有做出任何假设。但是光量子假说除此以外还给出了伏打效应和光电漫射之间的定量关系。这就是说,一个负的基元电量子(电荷ε)要从金属运动到气体中,必须至少带有能量Vε。因此,一种光要把负电从金属中打出来,只有当这种光的“光量子”具有不小于Vε的能量值时才有可能。于是我们得到: Vε≦Rβn/N或者 V≦Rβn/A,这里A是1mol单价离子的电荷。”
接着,爱因斯坦假设光量子能量一经超过Vε,一部分吸收光的电子就会离开金属,则根据上述的光量子假设便有关系式6: V=Rβn/A,其中 n是能引起光电效应的光的最小频率。
设 n1和 n2分别表示在金属M1和M2中引起光电效应的光的最小频率,则这两种金属的伏打电压差V12为公式7:
-V12=V1-V2=Rβnn1-n2)/A
V12用伏特来计量时则为公式7a:
V12=4.2×10-15(n2-n1)
在对公式7的一段赞叹和自恋中,爱因斯坦结束了论文《关于光产生和光吸收的理论》:“在这个公式中(注:公式7),很大程度上包含了下述完全而又普遍有效的命题:一种金属的正电性愈强,在该金属中引起光电效应的最低光频就愈小。是否应当认为这个公式也在定量的方面反映了事实,弄清楚这一点该是有很大意义的吧。”
论文至此正式结束。的确是一篇老少皆宜、大众基本能看懂的大师之作,尤其是第二部分,所以,物理学教科书里提到的爱因斯坦用光量子理论解释光电效应的确属于大师之作中最容易看懂的部分,但并不包含大师论证光量子成立的理论依据和推导,而这些类似光量子背后成立依据和理论推导的过程才代表推动基础科学进步需要的理论思考和处理的能力。